Effects of the substituent groups at the 4- and 7-positions on the fluorescence characteristics of benzofurazan compounds

Seiichi Uchiyama, Tomofumi Santa, Takeshi Fukushima, Hiroshi Homma and Kazuhiro Imai*

Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkvo-ku, Tokvo 113-0033, Japan

To develop new fluorogenic reagents having the benzofurazan structure, we investigated the effects of the substituent groups at the 4- and 7-positions of the benzofurazan skeleton on the fluorescence characteristics (fluorescence intensity, maximum excitation wavelength and maximum emission wavelength). Seventy benzofurazan compounds substituted at the 4- and 7-positions were obtained for this purpose. The Hammett substituent constant (σ_p) was adopted as a parameter for electronic effects by substituent groups. The study using the sum and the difference of the Hammett substituent constants (σ_n) at the 4- and 7-positions revealed that the highly fluorescent benzofurazan compounds were classified into two groups and that singlet excitation energies, calculated by the maximum excitation and emission wavelengths, of the benzofurazan compounds were different between these two groups. The fluorescence characteristics of benzofurazan compounds substituted at the 4- and 7-positions were empirically predictable by these relationships and σ_p values. A new fluorogenic reagent, 4-phenylaminosulfonyl-7fluoro-2,1,3-benzoxadiazole, for amines was developed based on this method and applied to the amino acids analysis.

Introduction

Fluorometric detection has been widely used in many fields of science. Above all, it has often been adopted for the detection method of high-performance liquid chromatography (HPLC). However, most compounds do not fluoresce and derivatization or chemical transformation of the analytes with various fluorescent derivatization reagents has to be carried out to make the method useful for a much wider range of analytes.

Until now, numerous fluorescent derivatization reagents have been reported ¹⁻⁸ and these can be classified in two categories. One is a "fluorescent tagging or labeling reagent" composed of a highly fluorescent moiety and a tagging moiety which reacts with the functional group of analytes to form fluorescenttagging derivatives. The other is a "fluorogenic reagent" which is non-fluorescent itself and reacts with the analytes to form the fluorescent derivatives. The fluorogenic reagents are generally superior as they avoid interference from fluorescence of the reagent itself.

In the course of our studies on the development of fluorogenic reagents having a 2,1,3-benzoxadiazole (benzofurazan) skeleton, the following were synthesized: 4-fluoro-7-nitro-2,1,3benzoxadiazole (NBD-F)⁹ for amines, 4-(N,N-dimethylaminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole (DBD-F)¹⁰ for amines thiols, 4-aminosulfonyl-7-fluoro-2,1,3-benzoxadiazole and (ABD-F),¹¹ 7-fluoro-2,1,3-benzoxadiazole-4-sulfonate (SBD-F)¹² for thiols, 4-hydrazino-7-nitro-2,1,3-benzoxadiazole (NBD-H),¹³ 4-(N,N-dimethylaminosulfonyl)-7-hydrazino-2,1,3-benzoxadiazole (DBD-H), 4-aminosulfonyl-7-hydrazino-2,1,3-benzoxadiazole (ABD-H)¹⁴ for aldehydes and ketones. However, we did not have a general rule which could predict the fluorescence characteristics (fluorescence intensity, maximum excitation and emission wavelengths) of each molecule accurately from its chemical structure, although there have been many reports on the effects of the chemical structure 15,16 or substituent groups $^{17-20}$ on the fluorescence characteristics. Therefore, the understanding of the effects of the substituent groups on the fluorescence characteristics of the benzofurazan compounds is necessary for the further development of new fluorogenic reagents.

Fig. 1 Chemical structure of benzofurazan compounds (R¹, R²; substituent groups). The substituent groups used in this study are described in Table 1.

In this article, we try to elucidate the relationship between the substituent groups and fluorescence characteristics of 4,7disubstituted benzofurazan compounds. A new fluorogenic reagent obtained based on the relationship is also described.

Results and discussion

The fluorescence characteristics of the synthesized benzofurazan compounds

The seventy benzofurazan compounds having various kinds of substituent groups, R^1 and R^2 , denoted R^1/R^2 in the text, at the 4- and 7-positions of the benzofurazan structure were obtained (Fig. 1). The substituent groups, the relative fluorescence intensities, the maximum excitation wavelength and the maximum emission wavelength of these compounds are summarized in Table 1.

The relationship between the relative fluorescence intensity and the Hammett substituent constant of the substituent groups at the 4- and 7-positions

In order to know the contribution of the substituent groups at the 4- and 7-positions of the benzofurazan structure to the fluorescence characteristics, a suitable, easily available, parameter was searched for. Since the fluorescence characteristics of benzofurazan compounds were assumed to be determined by the electronic effects (resonance plus field) of substituent groups at the 4- and 7-positions, the Hammett substituent constant $(\sigma_n)^{21-23}$ values seemed to be suitable to represent the total electronic effects, although these constants are commonly used

 Table 1
 Fluorescence characteristics of the compounds having the benzofuran skeleton

No.	R ¹	R ²	R.F.I.ª	$\lambda(ex)/nm$	$\lambda(em)/nm$
1	SO ₂ Cl	F	0.7	352	459
2	SO_2F	OPh	0.0		
3	SO ₂ F	NMe ₂	1.6	440	533
4	NO_2	Cl	0.0		
5	NO_2	SPh	0.0		
6	NO ₂	F	0.0		
7	NO ₂	SEt	0.3	428	495
8	NO ₂	NHAc	0.4	416	503
9	NO ₂	SMe	0.6	427	507
10	NO	OPh	0.0		
11	NO ₂	OMe	0.0		
12	NO ₂	NHNH,	0.0		
13	NO.	NHPh	0.0		
14	NO ₂	NH	54.5	460	532
15	NO.	NHMe	62.7	467	528
16	NO.	OH	3.7	468	545
17	NO ₂	NMe.	7.2	481	533
18	NO ₂	NPr ⁿ	5.2	401	538
10	SO Ph	NHAC	84.4	366	186
20	SO Ph	NHCOPh	172.6	268	400
20	$SO_2 I II$	NICOIII	1/2.0	508	492
21	$SO_2 NM_2$	E	0.0		
22	$SO_2 NMe_2$	Г СГ4	0.0	202	500
23	SO_2NMe_2	SEL NULA -	2.3	393	508
24	SO_2NMe_2	NHAC	2.4	369	492
25	SO_2NMe_2	SMe	2.8	390	507
26	SO_2NMe_2	OEt	0.2	353	469
27	SO_2NMe_2	OMe	0.0		
28	SO_2NMe_2	NHPh	0.0		
29	SO_2NMe_2	NH ₂	1.0	428	559
30	SO_2NMe_2	NHMe	5.9	430	552
31	SO_2NMe_2	NMe_2	6.7	448	563
32	SO_2NMe_2	NPr_{2}^{n}	8.8	459	563
33	SO_2NH_2	NCS	0.3	356	475
34	SO_2NH_2	F	0.0		
35	SO_2NH_2	SEt	3.4	387	511
36	SO_2NH_2	SMe	4.2	385	511
37	SO_2NH_2	OEt	7.9	353	471
38	SO_2NH_2	OMe	6.0	352	468
39	SO_2NH_2	NHNH ₂	0.0		
40	SO_2NH_2	NH ₂	0.4	424	568
41	SO_2NH_2	NHMe	2.0	430	563
42	SO ₂ NH ₂	NMe ₂	2.9	448	570
43	SO ₂ NH ₂	NPr_{2}^{n}	4.9	459	573
44	SOPh	NHAc	1.6	369	506
45	SOPh	NHCOPh	1.9	368	506
46	NCS	Cl	0.1	416	519
47	NCS	OMe	1.4	384	523
48	NCS	NMe ₂	0.0		
49	SO_3^-	F	0.0		
50	SO ₃ ⁻	SEt	41.5	380	508
51	SO ₃ ⁻	NHAc	14.0	358	492
52	SO ₃ ⁻	SMe	33.3	379	508
53	SO ₃ ⁻	NHCOPh	10.8	358	495
54	SO ²	OEt	5.4	352	472
55	SO ²	OMe	6.2	348	470
56	SO,-	NH	0.1	414	572
57	SO,-	NHMe	0.3	428	569
58	CI,	NHAC	21	368	521
59	Cl	NHCOPh	3.1	366	520
60	Cl	NH.	0.0	500	520
61	SPh	NHAC	0.5	392	554
62	SPh	NHCOPh	0.9	400	550
63	SPh	NH	0.0	100	559
64	F	NHAC	0.0	363	520
65	F	NH	0.0	305	520
66	NHAc	OM_2	0.0	416	540
67	NUAC	NMa	0.1	410	540
69	OMa	NU	0.0		
60	NH		0.0		
70	NII2	NIM-	0.0		
/0	INH ₂	IN Me ₂	0.0		

^{*a*} R.F.I. = Fluorescence intensity of SO₂NMe₂/NH₂ (No. 29) was arbitrarily taken as 1.0.

for estimation of reactivity and there is no theoretical connection between σ_p constants and fluorescence.

At first, the relationship between the relative fluorescence intensity and the substituent groups of 4,7-disubstituted benzo-

Fig. 2 The relationship between the relative fluorescence intensity and the Hammett substituent constant of the substituent group *para* to the OMe group (a) and the NMe_2 group (b) of 4,7-substituted benzo-furazan compounds.

furazan compounds was investigated for the compounds having OMe and NMe₂ substituents. Fig. 2 shows the relationship between the relative fluorescence intensity and the Hammett substituent constant for the substituent group at the position *para* to the OMe group (a) and the NMe₂ group (b). There were some relations between the fluorescence intensity of these compounds and the σ_p value for the substituent group at the position *para* to both the OMe group and the NMe₂ group. The Hammett substituent constants seemed to be related to the electronic parameters of the substituent groups which affect the fluorescence intensity of benzofurazan compounds. Therefore, a further study was performed on all the benzofurazan compounds synthesized.

In order to simplify the relations, the sum of the Hammett substituent constants at the 4- and 7-positions was taken at the abscissa as a parameter for the electron density of the benzo-furazan skeleton, and the difference of the Hammett substituent constants was taken at the vertical axis as a parameter for the magnitude of the dipole moment directed from the 4- to the 7-position. Then, the seventy benzofurazan compounds were first classified into three groups according to their relative fluorescence; R.F.I. = 1-5, having moderate fluorescence; and R.F.I. >5, having strong fluorescence) and plotted on this graph (Fig. 3).

As shown in Fig. 3, the fluorescent compounds, represented as closed squares and closed triangles, were concentrated in two areas (areas A and B, named for convenience), in contrast the non-fluorescent compounds scattered out of these two areas. These results suggest that the fluorescence intensities of these compounds are strongly influenced by a certain range of both the electronic density and the dipole moment of the benzofurazan skeleton and thus the fluorescence intensity may be predicted using this graph. In fact, the relationship between the substituent groups and the fluorescence intensity revealed

in this study explains well the data in previous reports.²⁴⁻²⁸ For example, it was reported that NO₂/F reacted with alkylamines such as methylamine and/or dimethylamine to form a strong fluorescent compound,24-28 whereas it reacted with arylamine such as aniline to form a non-fluorescent compound.⁸ As shown in Fig. 3, $NO_2/NHMe$ (the abscissa and the ordinate are 0.05 and 1.51, respectively), the reaction product of NO₂/F and methylamine, and NO_2/NMe_2 (-0.05, 1.61), the reaction product of NO₂/F and dimethylamine, belong to the fluorescent area A, whereas NO₂/NHPh (0.22, 1.34) belongs to the nonfluorescent area. Therefore, only alkylamine derivatives of NO₂/ F are expected to fluoresce. Further, NO₂/OH can be assumed to exist as NO₂/O⁻ (-0.03, 1.59) in the neutral medium and exists as NO₂/OH (0.41, 1.15) in the acidic medium. Therefore NO₂/OH can be expected to fluoresce in the neutral medium but not in the acidic medium, because only NO₂/O⁻ appears in the fluorescent area A in Fig. 3. Certainly, it was reported that NO₂/OH fluoresces in the neutral medium, however, it did not in the acidic medium.²⁴ These results demonstrate that the fluorescence intensity of benzofurazan compounds can be predicted using Hammett substituent constants of the substituent groups at the 4- and 7-positions.

The relationship between the maximum excitation and emission wavelength and Hammett substituent constants of the substituent groups at the 4- and 7-positions

Next, we tried to use further Hammett substituent constants to elucidate the relationship between the substituent groups and the maximum excitation and emission wavelength of the benzo-

Fig. 3 The relationship between the relative fluorescence intensity of benzofurazan compounds and Hammett substituent constants of the substituent groups at the 4- and 7-positions; ■, R.F.I. \geq 5.0; ▲, 5.0 > R.F.I \geq 1.0; \bigcirc , 1.0 > R.F.I.

furazan compounds. Since the wavelengths are related to the singlet excitation energy, *i.e.* the difference between the ground state and the excited singlet state energy level, we adopted it as a parameter. The singlet excitation energies were only calculated for the compounds having stronger fluorescence intensity than SO_2NMe_2/NH_2 (R.F.I = 1.0) according to eqn. (1), and were summarized in Table 2.

Singlet excitation energy/nm⁻¹ = $[1/\lambda(ex) + 1/\lambda(em)]/2$ (1)

As shown in Table 2, all the compounds having a larger singlet excitation energy appear in area B, whereas the compounds having a smaller singlet excitation energy appear in the area A. That is to say, the maximum excitation and emission wavelengths of the compounds in area A are longer than those in area B. It was reported that the absorption bands around 360 nm were associated with $\pi \rightarrow \pi^*$ transitions,²⁹ whereas the absorption bands over 420 nm were associated with intramolecular charge transfer transition²⁹⁻³² in 4,7-disubstituted benzofurazan compounds. Therefore, the compounds in area A were presumed to fluoresce via the excitation associated with intramolecular charge transfer transitions, whereas the compounds in area B via $\pi \rightarrow \pi^*$ transitions. And the large difference in the Hammett substituent constants for the 4- and 7-positions of the compounds in area A agrees with the fact that the compounds exhibiting intramolecular charge transfer absorption have large dipole moments.³² As a result, the trend of maximum excitation and emission wavelengths of fluorescent benzofurazan compounds is also predictable using Hammett substituent constants.

The relationship thus obtained between the substituent group and the maximum excitation and emission wavelengths agreed with previous reports.^{10,33} It was reported that SO₂-NMe₂/F (DBD-F) reacted with an alkylamine such as dimethylamine to form a fluorescent compound having longer excitation and emission wavelengths,33 whereas it reacted with alkylthiols such as methanethiol to form fluorescent compounds having shorter excitation and emission wavelengths.¹⁰ The reaction product of SO₂NMe₂/F and dimethylamine, SO_2NMe_2/NMe_2 (-0.18, 1.48), appears in area A and the reaction product of SO₂NMe₂/F and methane thiol, SO₂NMe₂/SMe (0.65, 0.65) appears in area B. Therefore, the maximum excitation and emission wavelengths of SO2NMe2/NMe2 were expected to be longer than those of SO2NMe2/SMe. These results suggest that this relationship is valid for the prediction of the fluorescence characteristics of 4,7-disubstituted benzofurazan compounds.

A new fluorogenic reagent synthesized according to the relationship

We tried to develop a new fluorogenic reagent for amines

Table 2 Singlet excitation energies of fluorescent benzofurazan compounds (R.F.I. ≥ 1.0)

-	•		•			
	Compound	Energy/ 10^{-3} nm ⁻¹	Area	Compound	Energy/ 10^{-3} nm ⁻¹	Area
	SO ₃ ⁻ /OMe	2.50	В	SO ₂ NMe ₂ /SMe	2.27	В
	SO ₂ NH ₂ /OMe	2.49	В	NCS/OMe	2.26	В
	SO ₃ ⁻ /OEt	2.48	В	SO ₂ NMe ₂ /SEt	2.26	В
	SO ₂ NH ₂ /OEt	2.48	В	SO ₂ F/NMe ₂	2.07	А
	SO ₃ ⁻ /NHAc	2.41	В	SO ₂ NMe ₂ /NHMe	2.07	А
	SO ₃ ⁻ /NHCOPh	2.41	В	SO ₂ NMe ₂ /NH ₂	2.06	Α
	SO ₂ Ph/NHAc	2.39	В	SO ₂ NH ₂ /NHMe	2.05	А
	SO ₂ Ph/NHCOPh	2.37	В	NO_2/NH_2	2.03	А
	SO ₂ NMe ₂ /NHAc	2.37	В	NO ₂ /NHMe	2.02	А
	SOPh/NHCOPh	2.35	В	SO ₂ NMe ₂ /NMe ₂	2.00	А
	SOPh/NHAc	2.34	В	SO ₂ NH ₂ /NMe ₂	1.99	А
	Cl/NHAc	2.32	В	NO_2/O^-	1.99	А
	SO ₃ ^{-/} SMe	2.30	В	NO_2/NMe_2	1.98	А
	SO ₃ ⁻ /SEt	2.30	В	SO ₂ NMe ₂ /NPr ⁿ ₂	1.98	А
	SO ₂ NH ₂ /SMe	2.28	В	SO ₂ NH ₂ /NPr ⁿ ₂	1.96	А
	SO_2NH_2/SEt	2.27	В	NO_2/NPr_2^n	1.95	А

Fig. 4 Chemical structure of $\mathrm{SO}_2\mathrm{NHPh/F}$ and its reaction with amines.

according to the obtained relationship. First, fluoride (F) group was selected as the reaction group at the 7-position for amines. Then the relationship suggests that a substituent group at the 4- position with a $\sigma_{\rm p}$ value from 0.6 to 0.8 is an appropriate fluorogenic reagent for amines (σ_p is about -0.8) without fluorescence from the reagent itself, resulting in the production of a fluorescent compound which falls in area A (longer excitation and emission wavelengths group). SO₂Ph (0.68), SO₂NHPh (0.65) and SO₂Me (0.72) groups should be suited to this criteria. We synthesized SO₂NHPh/F and SO₂NHPh/NMe₂ as a fluorogenic reagent and the reaction product with dimethylamine, respectively, to demonstrate the validity of the relationship (Fig. 4). The reagent SO₂NHPh/F was not fluorescent (R.F.I. = 0.0), but the derivative with dimethylamine, SO_2NHPh/NMe_2 , was highly fluorescent (R.F.I. = 6.7) with excitation at 449 nm and emission at 562 nm. The derivative was stable for more than a week in methanol or dichloromethane at room temperature in the glass tube, suggesting the usefulness of SO₂NHPh/F as a fluorogenic reagent. These results further demonstrated the validity of the relationship.

The derivatization of amino acid standards was performed with the new fluorogenic reagent, SO₂NHPh/F, and the chromatogram of amino acid derivatives is shown in Fig. 5. No interfering peak was observed. The elution order of the SO₂NHPh/amino acid was as follows: alanine, proline, valine and leucine, and the detection limits (signal to noise ratio = 3) were 10, 1.0, 14 and 10 fmol, respectively. The emission wavelengths of SO₂NHPh/F derivatives (around 560 nm) are longer than those of NBD-F or Dns-Cl (5-dimethylaminonaphthalene-1-sulfonyl chloride)³⁴ derivatives (around 530 nm and 510 nm, respectively), providing superiority to the latter with regard to the avoidance of the fluorescent interferences derived from biomatrices. Moreover, SO₂NHPh/F reacts with secondary amines to form fluorescent compounds, whereas fluorescamine³⁵ and OPA (o-phthalaldehyde)³⁶ do not give fluorescent adducts.

In conclusion, using Hammett substituent constants (σ_p) as a parameter for the electronic effects of the substituent groups on the benzofurazan skeleton, the relationship between the substituent groups at the 4- and 7-positions of the benzofurazan skeleton and the fluorescence characteristics was established, enabling us to predict the fluorescence characteristics of 4,7-disubstituted benzofurazan compounds. In future, the fluorescence characteristics could be predicted more precisely if the electronic effects of substituent groups in the excited states were estimated by the study using the computer calculation.

Experimental

Materials

NBD-Cl, NBD-F, DBD-F, methylamine solution (40% in water), phenol and methyl mercaptan sodium salt solution (15% in water) were obtained from Tokyo Kasei (Tokyo, Japan). Aniline, ammonia solution (29% in water), dimethylamine solution (40% in water), di-*n*-propylamine, triethylamine, thiophenol, ethanethiol, dichloromethane, hydrochloric acid, iron powder, sodium hydroxide, sodium sulfate, pyridine, acetic anhydride, benzoic anhydride, sodium periodate and hexane were purchased from Kanto Chemicals (Tokyo, Japan). ABD-F and SBD-F were obtained from Wako Pure Chemicals (Osaka,

Fig. 5 Chromatogram of amino acids derivatized with SO₂NHPh/F: (1) alanine 4.0 pmol, (2) proline 0.8 pmol, (3) valine 4.0 pmol, (4) leucine 4.0 pmol; column, TSK gel ODS-80Ts (150×4.6 mm, i.d. 5 µm); eluent CH₃CN–water (7:12) containing TFA (0.01%); flow rate, 1.0 ml min⁻¹; detection, excitation 450 nm, emission 560 nm.

Japan). Alanine, leucine, proline and valine were obtained from Sigma Chemical Co. (St. Louis, Missouri, USA). Silica gel 60 was obtained from Merck (Darmstadt, Germany). Acetonitrile, methanol and ethanol were of HPLC grade (Kanto Chemicals, Tokyo, Japan). Water was purified using a Milli-Q reagent system (Millipore, Bedford, MA, USA). All other chemicals were of analytical or guaranteed reagent grade and were used without further purification.

Apparatus

Melting points were measured on a Yanagimoto Micro Melting Point Apparatus (Tokyo, Japan) and uncorrected. Proton nuclear magnetic resonance (¹H-NMR) spectra were obtained on a JEOL GSX-400 spectrometer (Tokyo, Japan) with tetramethylsilane as an internal standard in CDCl₃ (abbreviations used: s = singlet, d = doublet, t = triplet, q = quartet and m = multiplet), J values are given in Hz. Mass spectra were measured on a Hitachi M-1200 H mass spectrometer [atmospheric pressure chemical ionization (APCI) system and electrospray ionization (ESI) system] (Tokyo, Japan). Fluorescence spectra were measured with a Hitachi F-4010 fluorescence spectrometer (Tokyo, Japan).

Synthesis

4-Amino-7-N,N-dimethylaminosulfonyl-2,1,3-benzoxadiazole (DBD-NH₂: SO₂NMe₂/NH₂),³⁷ 4-amino-7-aminosulfonyl-2,1,3-benzoxadiazole (ABD-NH₂: SO₂NH₂/NH₂),³⁷ 7-N,Ndimethylaminosulfonyl-4-(2,1,3-benzoxadiazolyl) isothiocyanate (DBD-NCS: SO₂NMe₂/NCS),³⁷ 7-aminosulfonyl-4-(2,1,3-benzoxadiazolyl) isothiocyanate (ABD-NCS: SO₂NH₂/ NCS),³⁷ NBD-H (NO₂/NHNH₂),¹³ ABD-H (SO₂NH₂/ NHNH₂),¹⁴ 4-fluorosulfonyl-7-phenoxy-2,1,3-benzoxadiazole (PBD-SO₂F: SO₂F/OPh),³³ 4-N,N-dimethylamino-7-fluorosulfonyl-2,1,3-benzoxadiazole (DBD-SO₂F: SO₂F/NMe₂),¹⁰ 4-N,N-dimethylamino-7-N,N-dimethylaminosulfonyl-2,1,3benzoxadiazole (DDB: SO2NMe2/NMe2),10 4-chlorosulfonyl-7fluoro-2,1,3-benzoxadiazole (CBD-F: SO₂Cl/F),¹¹ 4-N,N- $(NO_2/NMe_2),^{20}$ dimethylamino-7-nitro-2,1,3-benzoxadiazole 4-*N*,*N*-dimethylamino-7-amino-2,1,3-benzoxadiazole (NH₂/

 NMe_2),²⁰ 7-*N*,*N*-dimethylamino-4-(2,1,3-benzoxadiazolyl) isothiocyanate (NCS/NMe₂),²⁰ 4-methoxy-7-nitro-2,1,3-benzoxaddiazole (NO₂/OMe),²⁰ 4-methoxy-7-amino-2,1,3-benzoxadiazole (OMe/NH₂),²⁰ 7-methoxy-4-(2,1,3-benzoxadiazolyl) isothiocyanate (NCS/OMe),²⁰ 4-amino-7-chloro-2,1,3-benzoxadiazole (Cl/NH₂)²⁰ and 7-chloro-4-(2,1,3-benzoxadiazolyl) isothiocyanate (NCS/Cl)²⁰ were synthesized and purified as described previously.

4-Phenylamino-7-nitro-2,1,3-benzoxadiazole (NO₂/NHPh). NBD-Cl (200 mg, 1.00 mmol) was dissolved in 20 ml of acetonitrile. After the addition of 1 ml of aniline, the mixture was stirred for 30 min. The reaction mixture was evaporated to dryness under reduced pressure and the residue was chromatographed on silica gel with CH₂Cl₂ to afford NO₂/NHPh (131 mg, 51%) as a red powder, mp: 152–153 °C. $\delta_{\rm H}$ 8.46 (1H, d, *J* 8.0), 7.82 (1H, br), 7.38–7.53 (5H, m), 6.74 (1H, d, *J* 8.0). Found: C, 55.98; H, 2.82; N, 22.09. Calc. for C₁₂H₈N₄O₃: C, 56.25; H, 3.15; N, 21.87%; APCI-MS: *m/z* 257 ((M + H)⁺).

4-Amino-7-nitro-2,1,3-benzoxadiazole (NO₂/NH₂). NBD-Cl (1 g, 5.01 mmol) was dissolved in 25 ml of acetonitrile. After the addition of 3 ml of ammonia solution, the mixture was stirred for 60 min. The reaction mixture was evaporated to dryness under reduced pressure and the residue was chromatographed on silica gel with AcOEt–hexane (3:2) to afford NO₂/NH₂ (380 mg, 42 %) as a brown powder, mp: 272–273 °C. $\delta_{\rm H}$ 8.46 (1H, d, *J* 8.0), 6.41 (1H, d, *J* 8.0). Found: C, 40.23; H, 2.22; N, 30.84. Calc. for C₆H₄N₄O₃: C, 40.01; H, 2.24; N, 31.10%; APCI-MS: *m*/*z* 181 ((M + H)⁺).

4-Methylamino-7-nitro-2,1,3-benzoxadizole (NO₂/NHMe). NBD-F (40 mg, 0.22 mmol) was dissolved in 10 ml of acetonitrile. After the addition of 0.5 ml of methylamine solution, the mixture was stirred for 60 min. The reaction mixture was evaporated to dryness under reduced pressure and the residue was chromatographed on silica gel with AcOEt–hexane (1:1) to afford NO₂/NHMe (31 mg, 73%) as a brown powder, mp: 274–275 °C. $\delta_{\rm H}$ 8.53 (1H, d, *J* 8.0), 6.28 (1H, br), 6.18 (1H, d, *J* 8.0), 3.23 (3H, d, *J* 5.0). Found: C, 43.60; H, 2.96; N, 29.04. Calc. for C₇H₆N₄O₃: C, 43.31; H, 3.11; N, 28.86%; APCI-MS: *m*/z 195 ((M + H)⁺).

4-*N*,*N*-**Di**-*n*-**propylamino-7-nitro-2,1,3-benzoxadiazole** (**NO**₂/**NPr**^{*n*}₂). NBD-Cl (120 mg, 0.60 mmol) was dissolved in 10 ml of acetonitrile. After the addition of 0.3 ml of di-*n*-propylamine, the mixture was stirred for 30 min. The reaction mixture was evaporated to dryness under reduced pressure and the residue was chromatographed on silica gel with CH₂Cl₂-hexane (1:1) to afford NO₂/NPr^{*n*}₂ (110 mg, 69%) as an orange powder, mp: 92–93 °C. $\delta_{\rm H}$ 8.41 (1H, d, *J* 8.0), 6.10 (1H, d, *J* 8.0), 3.84 (4H, br), 1.80 (4H, q), 1.06 (6H, t). Found: C, 54.73; H, 5.88; N, 20.96. Calc. for C₁₂H₁₆N₄O₃: C, 54.54; H, 6.10; N, 21.20%; APCI-MS: *m/z* 265 ((M + H)⁺).

4-Phenylamino-7-*N,N***-dimethylaminosulfonyl-2,1,3-benzoxadiazole (SO₂NMe₂/NHPh).** DBD-F (50 mg, 0.20 mmol) was dissolved in 5 ml of acetonitrile. After the addition of 0.25 ml of aniline, the mixture was stirred for 60 min. The reaction mixture was evaporated to dryness under reduced pressure and the residue was chromatographed on silica gel with CH₂Cl₂– MeOH (10:1) to afford SO₂NMe₂/NHPh (4 mg, 6%) as a yellow powder, mp: 134–135 °C. $\delta_{\rm H}$ 7.88 (1H, d, *J* 8.0), 7.26–7.50 (5H, m), 6.77 (1H, d, *J* 8.0), 2.90 (6H, s). Found: C, 52.62; H, 4.16; N, 17.30. Calc. for C₁₄H₁₄N₄O₃S: C, 52.82; H, 4.43; N, 17.60%; APCI-MS: *m/z* 319 ((M + H)⁺).

4-Methylamino-7-*N*,*N*-dimethylaminosulfonyl-2,1,3-benzoxadiazole (SO₂NMe₂/NHMe). DBD-F (50 mg, 0.20 mmol) was dissolved in 2 ml of acetonitrile. After the addition of 5 ml of methylamine solution, the mixture was stirred for 60 min. The reaction mixture was evaporated to dryness under reduced pressure and the residue was chromatographed on silica gel with CH₂Cl₂-MeOH (10:1) to afford SO₂NMe₂/NHMe (26 mg, 51%) as a yellow powder, mp: 173–174 °C. $\delta_{\rm H}$ 7.93 (1H, d, *J* 8.0), 6.13 (1H, d, *J* 8.0), 5.71 (1H, br), 3.13 (3H, d, *J* 5.0), 2.88 (6H, s). Found: C, 42.47; H, 4.55; N, 21.58. Calc. for $C_9H_{12}N_4O_3S$: C, 42.18; H, 4.72; N, 21.86%; APCI-MS: *m*/*z* 257 ((M + H)⁺).

4-*N*,*N*-Dimethylamino-7-*N*,*N*-dimethylaminosulfonyl-2,1,3benzoxadiazole (SO₂NMe₂/NMe₂). DBD-F (100 mg, 0.41 mmol) was dissolved in 5 ml of acetonitrile. After the addition of 1 ml of dimethylamine solution, the mixture was stirred for 30 min. The reaction mixture was evaporated to dryness under reduced pressure and the residue was chromatographed on silica gel with CH₂Cl₂-MeOH (20:1) to afford SO₂NMe₂/ NMe₂ (59 mg, 53%) as an orange powder, mp: 145–146 °C. $\delta_{\rm H}$ 7.87 (1H, d, *J* 8.0), 6.04 (1H, d, *J* 8.0), 3.51 (6H, s), 2.87 (6H, s). Found: C, 44.20; H, 5.07; N, 20.73. Calc. for C₁₀H₁₄N₄O₃S: C, 44.43; H, 5.22; N, 20.73%; APCI-MS: *m*/*z* 271 ((M + H)⁺).

4-N,N-Di-n-propylamino-7-N,N-dimethylaminosulfonyl-

2,1,3-benzoxadiazole (SO₂NMe₂/NPr^{*n***}₂).** DBD-F (30 mg, 0.12 mmol) was dissolved in 5 ml of acetonitrile. After the addition of 0.2 ml of di-*n*-propylamine, the mixture was stirred for 30 min. The reaction mixture was evaporated to dryness under reduced pressure and the residue was chromatographed on silica gel with CH₂Cl₂ to afford SO₂NMe₂/NPr^{*n*}₂ (32 mg, 82%) as an orange powder, mp: 87–88 °C. $\delta_{\rm H}$ 7.84 (1H, d, *J* 8.0), 6.02 (1H, d, *J* 8.0), 3.75 (4H, t), 2.87 (6H, s), 1.76 (4H, m), 1.02 (6H, m). Found: C, 51.68; H, 6.86; N, 17.08. Calc. for C₁₄H₂₂N₄O₃S: C, 51.52; H, 6.79; N, 17.16%; APCI-MS: *m*/*z* 327 ((M + H)⁺).

4-Methylamino-7-aminosulfonyl-2,1,3-benzoxadiazole

(SO₂NH₂/NHMe). ABD-F (50 mg, 0.23 mmol) was dissolved in 10 ml of acetonitrile. After the addition of 1 ml of methylamine solution, the mixture was stirred for 3 hours. The reaction mixture was evaporated to dryness under reduced pressure and the residue was chromatographed on silica gel with CH₂Cl₂–MeOH (20:1) to afford SO₂NH₂/NHMe (42 mg, 80%) as an orange powder, mp: 249–250 °C. $\delta_{\rm H}$ 7.91 (1H, d, *J* 8.0), 6.99 (1H, br), 6.24 (2H, br), 6.02 (1H, d, *J* 8.0), 3.07 (3H, d, *J* 5.0). Found: C, 36.93; H, 3.50; N, 24.64. Calc. for C₇H₈N₄O₃S: C, 36.84; H, 3.53; N, 24.55%; APCI-MS: *m*/*z* 229 ((M + H)⁺).

4-*N*,*N*-**Dimethylamino-7-aminosulfonyl-2,1,3-benzoxadiazole** (SO₂NH₂/NMe₂). ABD-F (40 mg, 0.18 mmol) was dissolved in 10 ml of acetonitrile. After the addition of 0.4 ml of dimethylamine solution, the mixture was stirred for 30 min. The reaction mixture was evaporated to dryness under reduced pressure and the residue was chromatographed on silica gel with CH₂Cl₂– MeOH (20:1) to afford SO₂NH₂/NMe₂ (34 mg, 76%) as an orange powder, mp: 236 °C. $\delta_{\rm H}$ 7.86 (1H, d, *J* 8.0), 6.47 (2H, br), 6.03 (1H, d, *J* 8.0), 3.46 (6H, s). Found: C, 39.83; H, 4.00; N, 22.84. Calc. for C₈H₁₀N₄O₃S: C, 39.66; H, 4.16; N, 23.13%; APCI-MS: *m/z* 243 ((M + H)⁺).

4-*N*,*N*-Di-*n*-propylamino-7-aminosulfonyl-2,1,3-benzoxadiazole (SO₂NH₂/NPr^{*n*}₂). ABD-F (40 mg, 0.18 mmol) was dissolved in 5 ml of acetonitrile. After the addition of 0.1 ml of di-*n*-propylamine, the mixture was stirred for 60 min. The reaction mixture was evaporated to dryness under reduced pressure and the residue was chromatographed on silica gel with CH₂Cl₂-MeOH (20:1) to afford SO₂NH₂/NPr^{*n*}₂ (33 mg, 61%) as an orange powder, mp: 120–121 °C. $\delta_{\rm H}$ 7.87 (1H, d, *J* 8.0), 6.00 (1H, d, *J* 8.0), 5.03 (2H, br), 3.75 (4H, t), 1.74 (4H, m), 1.01 (6H, m). Found: C, 48.31; H, 6.18; N, 18.67. Calc. for C₁₂H₁₈N₄O₃S: C, 48.31; H, 6.08; N, 18.78%; APCI-MS: *m*/*z* 299 ((M + H)⁺).

4-Amino-2,1,3-benzoxadiazole-7-sulfonate (SO₃⁻/NH₂). SBD-F (200 mg, 0.85 mmol) was dissolved in 3 ml of ammonia solution. The mixture was stirred at 60 °C for 2 hours. The reaction mixture was evaporated to dryness under reduced pressure and the residue was chromatographed on silica gel with CH₂Cl₂–MeOH (4:1) to afford SO₃⁻/NH₂ (180 mg, 91%) as an orange powder, mp: >280 °C. $\delta_{\rm H}$ 7.47 (1H, d, *J* 8.0), 6.66 (2H, br), 6.18 (1H, d, *J* 8.0). Found: C, 31.13; H, 3.32; N, 24.08. Calc. for $C_6H_8N_4O_4S$ (with NH_4^+): C, 31.13; H, 3.47; N, 24.13%; ESI-MS: *m*/*z* 214 (M⁻).

4-Methylamino-2,1,3-benzoxadiazole-7-sulfonate (SO₃⁻¹/ NHMe). SBD-F (40 mg, 0.17 mmol) was dissolved in 3 ml of methylamine solution. The mixture was stirred at 60 °C for 2 hours. The reaction mixture was evaporated to dryness under reduced pressure and the residue was chromatographed on silica gel with CH₂Cl₂ to afford SO₃⁻⁷/NHMe (40 mg, 96%) as an orange powder, mp: 198 °C. $\delta_{\rm H}$ 7.81 (1H, d, *J* 8.0), 6.57 (1H, br), 5.97 (1H, d, *J* 8.0), 3.01 (3H, s). ESI-MS: *mlz* 228 (M⁻).

4-Ethoxy-7-*NN***-dimethylaminosulfonyl-2,1,3-benzoxadiazole** (**SO**₂**NMe**₂*/***OEt**). DBD-F (50 mg, 0.20 mmol) was dissolved in 20 ml of ethanol. After the addition of triethylamine (0.2 ml), the mixture was stirred for 6 hours at 60 °C. The mixture was evaporated to dryness under reduced pressure, and the residue was chromatographed on silica gel with CH₂Cl₂ to afford SO₂NMe₂/OEt (38 mg, 70%) as a white powder, mp: 142– 144 °C. $\delta_{\rm H}$ 7.99 (1H, d, *J* 8.0), 6.60 (1H, d, *J* 8.0), 4.38 (2H, q), 2.92 (6H, s), 1.61 (3H, t). Found: C, 44.31; H, 4.54; N, 15.28. Calc. for C₁₀H₁₃N₃O₄S: C, 44.27; H, 4.83; N, 15.49%; APCI-MS: *m*/*z* 272 ((M + H)⁺).

4-Methoxy-7-N,N-dimethylaminosulfonyl-2,1,3-benzoxa-

diazole (SO₂NMe₂/OMe). DBD-F (50 mg, 0.20 mmol) was dissolved in 20 ml of methanol. After the addition of triethylamine (0.2 ml), the mixture was stirred for 6 hours at 60 °C. The mixture was evaporated to dryness under reduced pressure, and the residue was chromatographed on silica gel with CH₂Cl₂ to afford SO₂NMe₂/OMe (40 mg, 78%) as a white powder, mp: 169 °C. $\delta_{\rm H}$ 8.01 (1H, d, *J* 8.0), 6.63 (1H, d, *J* 8.0), 4.16 (3H, s), 2.93 (6H, s). Found: C, 42.18; H, 4.37; N, 16.16. Calc. for C₉H₁₁N₃O₄S: C, 42.02; H, 4.31; N, 16.33%; APCI-MS: *mlz* 258 ((M + H)⁺).

4-Ethoxy-7-aminosulfonyl-2,1,3-benzoxadiazole (SO₂NH₂/ OEt). ABD-F (50 mg, 0.23 mmol) was dissolved in 20 ml of ethanol. After the addition of triethylamine (0.2 ml), the mixture was stirred for 6 hours at 60 °C. The mixture was evaporated to dryness under reduced pressure, and the residue was chromatographed on silica gel with CH₂Cl₂ to afford SO₂NH₂/ OEt (36 mg, 64%) as a white powder, mp: 174–176 °C. $\delta_{\rm H}$ 8.00 (1H, d, *J* 8.0), 6.58 (1H, d, *J* 8.0), 6.22 (2H, br), 4.38 (2H, q), 1.60 (3H, t). Found: C, 39.46; H, 3.53; N, 16.99. Calc. for C₈H₉N₃O₄S: C, 39.50; H, 3.73; N, 17.28%; APCI-MS: *m/z* 244 ((M + H)⁺).

4-Methoxy-7-aminosulfonyl-2,1,3-benzoxadiazole (SO₂NH₂/ OMe). ABD-F (50 mg, 0.23 mmol) was dissolved in 20 ml of methanol. After the addition of triethylamine (0.2 ml), the mixture was stirred for 6 hours at 60 °C. The mixture was evaporated to dryness under reduced pressure, and the residue was chromatographed on silica gel with CH₂Cl₂ to afford SO₂NH₂/OMe (38 mg, 72%) as a white powder, mp: 202– 203 °C. $\delta_{\rm H}$ 8.04 (1H, d, *J* 8.0), 6.61 (1H, d, *J* 8.0), 5.21 (2H, br), 4.16 (3H, s). Found: C, 36.59; H, 3.09; N, 18.18. Calc. for C₇H₇N₃O₄S: C, 36.68; H, 3.08; N, 18.33%; APCI-MS: *m/z* 230 ((M + H)⁺).

4-Ethoxy-2,1,3-benzoxadiazole-7-sulfonate (SO₃⁻/OEt). SBD-F (50 mg, 0.21 mmol) was dissolved in 20 ml of ethanol. After the addition of triethylamine (0.2 ml), the mixture was stirred for 6 hours at 60 °C. The mixture was evaporated to dryness under reduced pressure, and the residue was chromatographed on silica gel with CH₂Cl₂–MeOH (10:1) to afford SO₃⁻/OEt (43 mg, 78%) as a white powder, mp: >280 °C. $\delta_{\rm H}$ 7.88 (1H, d, *J* 8.0), 6.55 (1H, d, *J* 8.0), 4.32 (2H, q), 1.56 (3H, t). ESI-MS: *m/z* 243 (M⁻).

4-Methoxy-2,1,3-benzoxadiazole-7-sulfonate (SO₃^{-/}OMe). SBD-F (50 mg, 0.21 mmol) was dissolved in 20 ml of methanol. After the addition of triethylamine (0.2 ml), the mixture was stirred for 6 hours at 60 °C. The mixture was evaporated to dryness under reduced pressure, and the residue was chromatographed on silica gel with CH₂Cl₂–MeOH (10:1) to afford SO₃^{-/}OMe (47 mg, 91%) as a white powder, mp: >280 °C. $\delta_{\rm H}$ 7.87 (1H, d, *J* 8.0), 6.58 (1H, d, *J* 8.0), 4.08 (3H, s). ESI-MS: *m*/*z* 229 (M⁻).

4-Phenoxy-7-nitro-2,1,3-benzoxadiazole (NO₂/OPh). NBD-Cl (200 mg, 1.00 mmol) was dissolved in a mixture of acetonitrile (20 ml) and 0.1 M borate buffer (pH 9.5, 1 ml). After the addition of 100 mg of phenol, the mixture was stirred for 24 hours. The mixture was evaporated to dryness under reduced pressure, and the residue was chromatographed on silica gel with CH₂Cl₂-hexane (1:3) to afford NO₂/OPh (30 mg, 12%) as a yellow powder, mp: 121 °C. $\delta_{\rm H}$ 8.43 (1H, d, *J* 8.0), 7.26–7.58 (5H, m), 6.54 (1H, d, *J* 8.0). Found: C, 55.97; H, 2.59; N, 16.29. Calc. for C₁₂H₇N₃O₄: C, 56.04; H, 2.74; N, 16.34%; APCI-MS: *m/z* 258 ((M + H)⁺).

4-Phenylthio-7-nitro-2,1,3-benzoxadiazole (NO₂/SPh). NBD-Cl (1 g, 5.01 mmol) was dissolved in 20 ml of acetonitrile. After the addition of 1 ml of thiophenol and 0.5 ml of triethylamine, the mixture was stirred for 3 hours and NO₂/SPh (587 mg, 43%) was obtained as a yellow powder, mp: 157–158 °C. $\delta_{\rm H}$ 8.24 (1H, d, *J* 8.0), 7.57–7.70 (5H, m), 6.64 (1H, d, *J* 8.0). Found: C, 52.57; H, 2.42; N, 15.09. Calc. for C₁₂H₇N₃O₃S: C, 52.74; H, 2.58; N, 15.38%; APCI-MS: *m/z* 274 ((M + H)⁺).

4-Ethylthio-7-nitro-2,1,3-benzoxadiazole (NO₂/SEt). NBD-Cl (110 mg, 0.55 mmol) was dissolved in the mixture of acetonitrile (15 ml) and 0.1 M phosphate buffer (pH 8.0, 15 ml). After the addition of 0.1 ml of ethanethiol, the mixture was stirred for 4 hours. The mixture was evaporated to dryness under reduced pressure, and the residue was chromatographed on silica gel with AcOEt–hexane (3:2) to afford NO₂/SEt (48 mg, 39%) as a yellow powder, mp: 100–101 °C. $\delta_{\rm H}$ 8.43 (1H, d, *J* 8.0), 7.17 (1H, d, *J* 8.0), 3.32 (2H, q), 1.55 (3H, t). Found: C, 42.59; H, 3.01; N, 18.45. Calc. for C₈H₇N₃O₃S: C, 42.66; H, 3.13; N, 18.66%; APCI-MS: *m/z* 226 ((M + H)⁺).

4-Methylthio-7-nitro-2,1,3-benzoxadiazole (NO₂/SMe). NBD-F (40 mg, 0.22 mmol) was dissolved in the mixture of acetonitrile (5 ml) and 0.1 M phosphate buffer (pH 8.0, 15 ml). After the addition of 0.1 ml of methyl mercaptan sodium salt solution, the mixture was stirred for 5 min. The mixture was evaporated to dryness under reduced pressure, and the residue was chromatographed on silica gel with CH₂Cl₂–hexane (1:1) to afford NO₂/SMe (10 mg, 22%) as an orange powder, mp: 123–124 °C. $\delta_{\rm H}$ 8.43 (1H, d, *J* 8.0), 7.10 (1H, d, *J* 8.0), 2.78 (3H, s). Found: C, 39.66; H, 2.30; N, 19.69. Calc. for C₇H₅N₃O₃S: C, 39.81; H, 2.39; N, 19.90%; APCI-MS: *m/z* 212 ((M + H)⁺).

4-Ethylthio-7-*N*,*N*-**dimethylaminosulfonyl-2,1,3-benzoxadiazole (SO₂NMe₂/SEt).** DBD-F (40 mg, 0.16 mmol) was dissolved in the mixture of acetonitrile (14 ml) and 0.1 M phosphate buffer (pH 8.0, 13 ml). After the addition of 0.1 ml of ethanethiol, the mixture was stirred for 1 hour. The mixture was evaporated to dryness under reduced pressure, and the residue was chromatographed on silica gel with CH₂Cl₂ to afford SO₂NMe₂/SEt (31 mg, 67%) as a yellow powder, mp: 149–150 °C. $\delta_{\rm H}$ 7.90 (1H, d, *J* 8.0), 7.12 (1H, d, *J* 8.0), 3.26 (2H, q), 2.94 (6H, s), 1.50 (3H, t). Found: C, 41.96; H, 4.35; N, 14.52. Calc. for C₁₀H₁₃N₃O₃S₂: C, 41.80; H, 4.56; N, 14.62%; APCI-MS: *m/z* 288 ((M + H)⁺).

4-Methylthio-7-*N*,*N*-dimethylaminosulfonyl-2,1,3-benzoxadiazole (SO₂NMe₂/SMe). DBD-F (50 mg, 0.20 mmol) was

dissolved in the mixture of acetonitrile (10 ml) and 0.1 M phosphate buffer (pH 8.0, 15 ml). After the addition of 0.2 ml of methyl mercaptan sodium salt solution, the mixture was stirred for 3 hours. The mixture was evaporated to dryness under reduced pressure, and the residue was chromatographed on silica gel with CH₂Cl₂–MeOH (10:1) to afford SO₂NMe₂/ SMe (6 mg, 11%) as a yellow powder, mp: 147–158 °C. $\delta_{\rm H}$ 7.92 (1H, d, *J* 8.0), 7.05 (1H, d, *J* 8.0), 2.93 (6H, s), 2.71 (3H, s). Found: C, 39.66; H, 3.89; N, 15.18. Calc. for C₉H₁₁N₃O₃S₂: C, 39.55; H, 4.06; N, 15.37%; APCI-MS: *m/z* 274 ((M + H)⁺).

4-Ethylthio-7-aminosulfonyl-2,1,3-benzoxadiazole (SO_2NH_2/SEt) . ABD-F (40 mg, 0.18 mmol) was dissolved in the mixture of acetonitrile (15 ml) and 0.1 M phosphate buffer (pH 8.0, 15

ml). After the addition of 0.2 ml of ethanethiol, the mixture was stirred at 50 °C for 30 min. The mixture was evaporated to dryness under reduced pressure, and the residue was chromatographed on silica gel with AcOEt–hexane (1:1) to afford SO₂NH₂/SEt (18 mg, 39%) as a yellow powder, mp: 154–156 °C. $\delta_{\rm H}$ 7.92 (1H, d, *J* 8.0), 7.14 (1H, d, *J* 8.0), 6.99 (2H, br), 3.27 (2H, q), 1.50 (3H, t). Found: C, 37.02; H, 3.26; N, 16.26. Calc. for C₈H₉N₃O₃S₂: C, 37.06; H, 3.50; N, 16.21%; APCI-MS: *m/z* 260 ((M + H)⁺).

4-Methylthio-7-aminosulfonyl-2,1,3-benzoxadiazole

(SO₂NH₂/SMe). ABD-F (50 mg, 0.23 mmol) was dissolved in the mixture of acetonitrile (15 ml) and 0.1 M phosphate buffer (pH 8.0, 15 ml). After the addition of 0.2 ml of methyl mercaptan sodium salt solution, the mixture was stirred for 60 min. The mixture was evaporated to dryness under reduced pressure, and the residue was chromatographed on silica gel with CH₂Cl₂–MeOH (10:1) to afford SO₂NH₂/SMe (33 mg, 58%) as a yellow powder, mp: 185 °C (decomp.). $\delta_{\rm H}$ 7.93 (1H, d, *J* 8.0), 7.06 (1H, d, *J* 8.0), 6.97 (2H, br), 2.72 (3H, s). Found: C, 34.25; H, 2.76; N, 17.20. Calc. for C₇H₇N₃O₃S₂: C, 34.28; H, 2.88; N, 17.13%; APCI-MS: *m/z* 246 ((M + H)⁺).

4-Ethylthio-2,1,3-benzoxadiazole-7-sulfonate (SO₃^{-/}SEt). SBD-F (50 mg, 0.21 mmol) was dissolved in the mixture of acetonitrile (5 ml) and 0.1 M phosphate buffer (pH 8.0, 15 ml). After the addition of 0.1 ml of ethanethiol, the mixture was stirred for 30 min. The mixture was evaporated to dryness under reduced pressure, and the residue was chromatographed on silica gel with CH₂Cl₂–MeOH (10:1) to afford SO₃⁻/SEt (9 mg, 15%) as yellow powder, mp: >280 °C. $\delta_{\rm H}$ 7.94 (1H, d, *J* 8.0), 7.15 (1H, d, *J* 8.0), 3.36 (2H, q), 1.44 (3H, t). ESI-MS: *m*/*z* 259 (M⁻).

4-Methylthio-2,1,3-benzoxadiazole-7-sulfonate (SO₃^{-/}SMe). SBD-F (50 mg, 0.21 mmol) was dissolved in the mixture of acetonitrile (5 ml) and 0.1 M phosphate buffer (pH 8.0, 15 ml). After the addition of 0.1 ml of methyl mercaptan sodium salt solution, the mixture was stirred for 2 hours. The mixture was evaporated to dryness under reduced pressure, and the residue was chromatographed on silica gel with CH₂Cl₂–MeOH (10:1) to afford SO₃^{-/}SMe (13 mg, 24%) as a yellow powder, mp: >280 °C. $\delta_{\rm H}$ 7.83 (1H, d, *J* 8.0), 7.05 (1H, d, *J* 8.0), 2.67 (3H, s). ESI-MS: *m/z* 245 (M⁻).

4-Phenylthio-7-amino-2,1,3-benzoxadiazole (SPh/NH₂). NO₂/ SPh (300 mg, 1.10 mmol) was dissolved in a mixture of dichloromethane (10 ml), methanol (10 ml) and conc. hydrochloric acid (2 ml). After addition of 300 mg of iron powder, the mixture was vigorously stirred for 30 minutes. The reaction mixture was poured into a 1 M NaOH solution (100 ml) and extracted with methylene chloride (100 ml). The organic layer was dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The residue was chromatographed on silica gel with CH₂Cl₂–hexane (2:1) to afford SPh/NH₂ (138 mg, 52%) as an orange powder, mp: 110–111 °C. δ_H 7.38 (1H, d, *J* 8.0), 7.16–7.31 (5H, m), 6.34 (1H, d, *J* 8.0), 4.76 (2H, br). Found: C, 58.99; H, 3.50; N, 17.15. Calc. for C₁₂H₉N₃OS: C, 59.24; H, 3.73; N, 17.27%; APCI-MS: *mlz* 244 ((M + H)⁺).

4-Amino-7-fluoro-2,1,3-benzoxadiazole (F/NH₂). NO₂/F (50 mg, 0.27 mmol) was dissolved in a mixture of dichloromethane (10 ml), methanol (5 ml) and conc. hydrochloric acid (2 ml). After the addition of 70 mg of iron powder, the mixture was vigorously stirred for 30 minutes. The reaction mixture was poured into a 1 M NaOH solution (100 ml) and extracted with methylene chloride (100 ml). The organic layer was dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The residue was chromatographed on silica gel with CH₂Cl₂ to afford F/NH₂ (11 mg, 27%) as orange crystals, mp: 93–94 °C. $\delta_{\rm H}$ 6.87 (1H, q), 6.22 (1H, q), 4.46 (2H, br). Found: C, 47.88; H, 2.60; N, 26.08. Calc. for C₆H₄FN₃O: C, 47.07; H, 2.63; N, 27.44%; APCI-MS: *mlz* 152 ((M – H)⁻).

4,7-Diamino-2,1,3-benzoxadiazole (NH₂/NH₂). NO₂/NH₂ (40 mg, 0.22 mmol) was dissolved in a mixture of dichloromethane

(10 ml), methanol (5 ml) and conc. hydrochloric acid (2 ml). After addition of 70 mg of iron powder, the mixture was vigorously stirred for 30 minutes. The reaction mixture was poured into a 1 M NaOH solution (100 ml) and extracted with methylene chloride (100 ml). The organic layer was dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The residue was chromatographed on silica gel with CH₂Cl₂ to afford NH₂/NH₂ (20 mg, 61%) as brown crystals, mp: 190 °C (decomp.). $\delta_{\rm H}$ 6.27 (2H, s), 4.01 (4H, br). APCI-MS: *m*/z 151 ((M + H)⁺).

4-Acetylamino-7-nitro-2,1,3-benzoxadiazole (NO₂/NHAc). NO₂/NH₂ (10 mg, 0.06 mmol) was dissolved in pyridine (2 ml). After the addition of acetic anhydride (0.5 ml), the mixture was stirred at 60 °C for 30 min. The mixture was evaporated to dryness under reduced pressure and the residue was chromatographed on silica gel with CH₂Cl₂ to afford NO₂/NHAc (6 mg, 49%) as red crystals, mp: 213–214 °C. $\delta_{\rm H}$ 8.59 (1H, d, *J* 8.0), 8.53 (1H, d, *J* 8.0), 2.38 (3H, s). APCI-MS: *m*/*z* 223 ((M + H)⁺).

4-Acetylamino-7-*N*,*N*-dimethylaminosulfonyl-2,1,3-benzoxadiazole (SO₂NMe₂/NHAc). SO₂NMe₂/NH₂ (20 mg, 0.08 mmol) was dissolved in pyridine (4 ml). After the addition of acetic anhydride (0.5 ml), the mixture was stirred at 60 °C for 30 min. The mixture was evaporated to dryness under reduced pressure and the residue was chromatographed on silica gel with CH₂Cl₂–MeOH (10:1) to afford SO₂NMe₂/NHAc (4 mg, 17%) as purple crystals, mp: 170 °C. $\delta_{\rm H}$ 8.39 (1H, d, *J* 8.0), 8.33 (1H, br), 8.03 (1H, d, J 8.0), 2.93 (6H, s), 2.37 (3H, s). APCI-MS: *m*/*z* 285 ((M + H)⁺).

4-Acetylamino-2,1,3-benzoxadiazole-7-sulfonate (SO₃⁻¹/ NHAc). SO₃⁻/NH₂ (20 mg, 0.09 mmol) was dissolved in pyridine (3 ml). After the addition of acetic anhydride (0.2 ml), the mixture was stirred at 70 °C for 1 hour. The mixture was evaporated to dryness under reduced pressure and the residue was chromatographed on silica gel to afford SO₃⁻¹/NHAc (9 mg, 38%) as a yellow powder, mp: 205 °C (decomp.). $\delta_{\rm H}$ 8.20 (1H, d, *J* 8.0), 7.88 (1H, d, *J* 8.0), 2.27 (3H, s). EI-MS: *m/z* 256 (M⁻).

4-Benzoylamino-2,1,3-benzoxadiazole-7-sulfonate (SO₃⁻/ NHCOPh). SO₃⁻/NH₂ (30 mg, 0.13 mmol) was dissolved in pyridine (4 ml). After the addition of benzoic anhydride (0.6 ml), the mixture was stirred for 30 min. The mixture was evaporated to dryness under reduced pressure and the residue was chromatographed on silica gel with CH₂Cl₂–MeOH (10:1) to afford SO₃⁻/NHCOPh (6 mg, 14%) as a yellow powder, mp: >280 °C. $\delta_{\rm H}$ 9.73 (1H, s), 8.27 (1H, d, *J* 8.0), 7.98–8.07 (5H, m), 7.43 (1H, d, *J* 8.0). EI-MS: *m/z* 318 (M⁻).

4-Acetylamino-7-chloro-2,1,3-benzoxadiazole (Cl/NHAc). Cl/ NH₂ (15 mg, 0.09 mmol) was dissolved in pyridine (0.5 ml). After the addition of acetic anhydride (0.2 ml), the mixture was stirred at 60 °C for 30 min. The mixture was evaporated to dryness under reduced pressure and the residue was chromatographed on silica gel with CH₂Cl₂ to afford Cl/NHAc (8 mg, 43%) as a yellow powder, mp: 137–138 °C. $\delta_{\rm H}$ 8.24 (1H, d, *J* 8.0), 8.08 (1H, br), 7.40 (1H, d, *J* 8.0), 2.37 (3H, s). Found: C, 45.50; H, 2.74; N, 19.79. Calc. for C₈H₆ClN₃O₂: C, 45.41; H, 2.86; N, 19.86%; APCI-MS: *m/z* 212 ((M + H)⁺).

4-Benzoylamino-7-chloro-2,1,3-benzoxadiazole (Cl/ NHCOPh). Cl/NH₂ (15 mg, 0.09 mmol) was dissolved in pyridine (0.5 ml). After the addition of benzoic anhydride (0.2 ml), the mixture was stirred at 60 °C for 30 min. The mixture was evaporated to dryness under reduced pressure and the residue was chromatographed on silica gel with CH₂Cl₂ to afford Cl/ NHCOPh (5 mg, 21%) as a yellow powder, mp: 136 °C. Found: C, 57.08; H, 2.70; N, 15.57. Calc. for C₁₃H₈ClN₃O₂: C, 57.05; H, 2.95; N, 15.35%; APCI-MS: *m/z* 274 ((M + H)⁺).

4-Phenylthio-7-acetylamino-2,1,3-benzoxadiazole (SPh/ NHAc). SPh/NH₂ (100 mg, 0.41 mmol) was dissolved in pyridine (3 ml). After the addition of acetic anhydride (0.8 ml), the mixture was stirred at 90 °C for 30 min. The mixture was evaporated to dryness under reduced pressure and the residue was chromatographed on silica gel with CH_2Cl_2 to afford SPh/ NHAc (83 mg, 73%) as a yellow powder, mp: 115–116 °C. $\delta_{\rm H}$ 8.15 (1H, d, *J* 8.0), 7.97 (1H, br), 7.36–7.52 (5H, m), 7.13 (1H, d, *J* 8.0), 2.30 (3H, s). Found: C, 58.67; H, 3.68; N, 14.78. Calc. for C₁₄H₁₁N₃O₂S: C, 58.94; H, 3.89; N, 14.73%; APCI-MS: *m/z* 286 ((M + H)⁺).

4-Phenylthio-7-benzoylamino-2,1,3-benzoxadiazole (SPh/ NHCOPh). SPh/NH₂ (100 mg, 0.41 mmol) was dissolved in pyridine (3 ml). After the addition of benzoic anhydride (2 ml), the mixture was stirred at 90 °C for 2 hours. The mixture was evaporated to dryness under reduced pressure and the residue was chromatographed on silica gel with AcOEt–hexane (1:3) to afford SPh/NHCOPh (36 mg, 25%) as a yellow powder, mp: 123 °C. $\delta_{\rm H}$ 8.64 (1H, br), 8.34 (1H, d, *J* 8.0), 7.37–7.95 (10H, m), 7.20 (1H, d, *J* 8.0). Found: C, 65.95; H, 4.07; N, 11.91. Calc. for C₁₉H₁₃N₃O₂S: C, 65.69; H, 3.77; N, 12.10%. APCI-MS: *m/z* 348 ((M + H)⁺).

4-Acetylamino-7-fluoro-2,1,3-benzoxadiazole (F/NHAc). F/ NH₂ (4 mg, 0.03 mmol) was dissolved in pyridine (0.5 ml). After the addition of acetic anhydride (0.2 ml), the mixture was stirred at 60 °C for 30 min. The mixture was evaporated to dryness under reduced pressure and the residue was chromatographed on silica gel with CH₂Cl₂ to afford F/NHAc (2 mg, 39%) as pale yellow powder, mp: 105–106 °C. $\delta_{\rm H}$ 8.21 (1H, d, *J* 8.0), 7.97 (1H, br), 7.06 (1H, d, *J* 8.0), 2.32 (3H, s). APCI-MS: m/z 194 ((M – H)⁻).

4-Methoxy-7-acetylamino-2,1,3-benzoxadiazole (NHAc/ OMe). OMe/NH₂ (14 mg, 0.08 mmol) was dissolved in pyridine (2 ml). After the addition of acetic anhydride (0.7 ml), the mixture was stirred for 3 hours. The mixture was evaporated to dryness under reduced pressure and the residue was chromatographed on silica gel with CH₂Cl₂ to afford NHAc/OMe (13 mg, 74%) as a yellow powder, mp: 165 °C. $\delta_{\rm H}$ 8.15 (1H, d, *J* 8.0), 7.81 (1H, br), 6.52 (1H, d, *J* 8.0), 4.03 (3H, s), 2.28 (3H, s). APCI-MS: *m/z* 208 ((M + H)⁺).

4-Acetylamino-7-N,N-dimethylamino-2,1,3-benzoxadiazole

(NHAc/NMe₂). NH₂/NMe₂ (20 mg, 0.11 mmol) was dissolved in pyridine (1 ml). After the addition of acetic anhydride (0.4 ml), the mixture was stirred for 2 hours. The mixture was evaporated to dryness under reduced pressure and the residue was chromatographed on silica gel with CH₂Cl₂ to afford NHAc/NMe₂ (15 mg, 61%) as brown crystals, mp: 152–153 °C. $\delta_{\rm H}$ 8.03 (1H, d, *J* 8.0), 7.63 (1H, br), 6.09 (1H, d, *J* 8.0), 3.25 (6H, s), 2.25 (3H, s). APCI-MS: *m/z* 221 ((M + H)⁺).

4-Acetylamino-7-phenylsulfonyl-2,1,3-benzoxadiazole

(SO₂Ph/NHAc). SPh/NHAc (20 mg, 0.07 mmol) was dissolved in methanol (20 ml). After the addition of 0.5 M sodium periodate solution (30 ml), the mixture was stirred at 70 °C for 2 hours. The mixture was evaporated to dryness under reduced pressure, and the residue was chromatographed on silica gel with AcOEt–hexane (1:2) to afford SO₂Ph/NHAc (11 mg, 50%) as a yellow powder, mp: 233 °C. $\delta_{\rm H}$ 8.41 (1H, d, *J* 8.0), 8.27 (1H, d, *J* 8.0), 8.24 (1H, br), 8.19 (2H, m), 7.56 (3H, m), 2.35 (3H, s). Found: C, 52.86; H, 3.44; N, 12.94. Calc. for C₁₄H₁₁N₃O₄S: C, 52.99; H, 3.49; N, 13.24%; APCI-MS: *m/z* 318 ((M + H)⁺).

4-Benzoylamino-7-phenylsulfonyl-2,1,3-benzoxadiazole

(SO₂Ph/NHCOPh). SPh/NHCOPh (28 mg, 0.08 mmol) was dissolved in methanol (20 ml). After the addition of 0.5 M sodium periodate solution (30 ml), the mixture was stirred at 70 °C for 2 hours. The mixture was evaporated to dryness under reduced pressure, and the residue was chromatographed on silica gel with AcOEt–hexane (1:2) to afford SO₂Ph/NHCOPh (2 mg, 7%) as white crystals, mp: 207–208 °C. $\delta_{\rm H}$ 8.89 (1H, br), 8.60 (1H, d, *J* 8.0), 8.34 (1H, d, *J* 8.0), 8.20 (2H, m), 7.95 (3H, m), 7.61 (6H, m). APCI-MS: *m*/*z* 380 ((M + H)⁺).

4-Acetylamino-7-phenylsulfinyl-2,1,3-benzoxadiazole (SOPh/ NHAc). SPh/NHAc (30 mg, 0.11 mmol) was dissolved in methanol (20 ml). After the addition of 0.5 M sodium periodate solution (30 ml), the mixture was stirred for 4 hours. The mixture was evaporated to dryness under reduced pressure, and the residue was chromatographed on silica gel with AcOEt–hexane (1:1) to afford SOPh/NHAc (11 mg, 35%) as a yellow powder, mp: 207–208 °C. $\delta_{\rm H}$ 8.43 (1H, d, *J* 8.0), 8.11 (1H, br), 8.08 (1H, d, *J* 8.0), 7.88 (2H, m), 7.47 (3H, m), 2.32 (3H, s). Found: C, 55.80; H, 3.56; N, 13.68. Calc. for C₁₄H₁₁N₃O₃S: C, 55.81; H, 3.68; N, 13.95%; APCI-MS: *m*/*z* 302 ((M + H)⁺).

4-Benzoylamino-7-phenylsulfinyl-2,1,3-benzoxadiazole

(SOPh/NHCOPh). SPh/NHCOPh (30 mg, 0.09 mmol) was dissolved in methanol (20 ml). After the addition of 0.5 M sodium periodate solution (30 ml), the mixture was stirred for 4 hours. The mixture was evaporated to dryness under reduced pressure, and the residue was chromatographed on silica gel with AcOEt–hexane (1:1) to afford SOPh/NHCOPh (11 mg, 35%) as a yellow powder, mp: 208 °C. $\delta_{\rm H}$ 8.77 (1H, br), 8.62 (1H, d, *J* 8.0), 8.15 (1H, d, *J* 8.0), 7.88–7.95 (4H, m), 7.47–7.64 (6H, m). Found: C, 62.61; H, 3.39; N, 11.30. Calc. for C₁₉H₁₃N₃O₃S: C, 62.80; H, 3.61; N, 11.56%; APCI-MS: *m/z* 364 ((M + H)⁺).

Measurement of fluorescence spectra

Benzofurazan compounds in MeOH (5 μ M) were used for the measurement of the fluorescence intensity, the maximum excitation wavelength and the maximum emission wavelength.

Hammett substituent constants

The values of the Hammett substituent constants (σ_p) used in this study were cited from the review by Hansch *et al.*²¹ as follows; 1.11 for SO₂Cl, 0.91 for SO₂F, 0.78 for NO₂, 0.68 for SO₂Ph, 0.65 for SO₂NMe₂, 0.60 for SO₂NH₂, 0.44 for SOPh, 0.38 for NCS, 0.35 for SO₃⁻, 0.23 for Cl, 0.07 for SPh, 0.06 for F, 0.03 for SEt, 0.00 for SMe and NHAc, -0.03 for OPh, -0.19 for NHCOPh, -0.24 for OEt, -0.27 for OMe, -0.55 for NHNH₂, -0.56 for NHPh, -0.66 for NH₂, -0.70 for NHMe, -0.81 for O⁻, -0.83 for NMe₂ and -0.93 for NPrⁿ₂.

Synthesis of 4-phenylaminosulfonyl-7-fluoro-2,1,3-benzoxadiazole (SO₂NHPh/F)

SO₂Cl/F (300 mg, 1.27 mmol) was dissolved in acetonitrile (4 ml). After the addition of aniline (160 µl), the mixture was stirred at room temperature for 1 hour. The reaction mixture was poured into 100 ml of a 1 M HCl solution and extracted with 100 ml of methylene chloride. The organic layer was dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The residue was chromatographed on silica gel with CH₂Cl₂ to afford SO₂NHPh/F (10 mg, 3%) as a white powder and SO₂F/NHPh (250 mg, by-product) as a red powder. SO₂NHPh/F; mp: 116–117 °C. $\delta_{\rm H}$ 8.01 (1H, q), 7.05–7.26 (6H, m). Found: C, 49.21; H, 2.66; N, 14.55. Calc. for C₁₂H₈FN₃O₃S: C, 49.15; H, 2.75; N, 14.33%; APCI-MS: *m*/*z* 292 ((M – H)⁻). SO₂F/NHPh; mp: 119 °C. $\delta_{\rm H}$ 8.09 (1H, d, *J* 8.0), 7.66 (1H, br), 7.36–7.55 (5H, m), 6.75 (1H, d, *J* 8.0). APCI-MS: *m*/*z* 292 ((M – H)⁻).

Synthesis of 4-*N*,*N*-dimethylamino-7-phenylaminosulfonyl-2,1,3benzoxadiazole (SO₂NHPh/NMe₂)

SO₂NHPh/F (3 mg, 0.01 mmol) was dissolved in acetonitrile (5 ml). After the addition of dimethylamine solution (30 µl), the mixture was stirred at room temperature for 10 minutes. The mixture was evaporated to dryness under reduced pressure, and the residue was chromatographed on silica gel with CH₂Cl₂–MeOH (10:1) to afford SO₂NHPh/NMe₂ (3 mg, 94%) as an orange powder, mp: 165–166. $\delta_{\rm H}$ 7.84 (1H, d, *J* 8.0), 7.02–7.16 (6H, m), 5.92 (1H, d, *J* 8.0), 3.46 (6H, s). Found: C, 52.95; H, 4.48; N, 17.37. Calc. for C₁₄H₁₄N₄O₃S: C, 52.80; H, 4.43; N, 17.60%; APCI-MS: *m/z* 319 ((M + H)⁺).

Derivatization of amino acid with SO₂NHPh/F

To a vial (0.5 ml volume) were added 20 μ l of SO₂NHPh/F in CH₃CN (20 mM) and 20 μ l of mixed amino acids (8 μ M each of alanine, valine, leucine; 1.6 μ M of proline) in 0.1 M borate buffer (pH 9.8). The vial was capped and heated at 50 °C for 2 hours. After cooling in ice–water, an aliquot (1 μ l) of the reaction solution was subjected to HPLC.

High-performance liquid chromatography

The high-performance liquid chromatograph consisted of a Hitachi L-6300 pump, a Hitachi L-1080 fluorescence detector and a Hitachi D-2500 integrator. The separation for the derivatives was studied on an analytical column, TSK gel ODS-80Ts ($150 \times 4.6 \text{ mm i.d.}, 5 \mu \text{m}$) (TOSOH, Tokyo, Japan). The eluting solvent for SO₂NHPh/amino acids was CH₃CN-H₂O (7 + 12, v/v) containing 0.1% TFA isocratically. The eluate was monitored with fluorescence (excitation at 450 nm, emission at 560 nm) detection.

Acknowledgements

The authors thank TOSOH Co. for supplying TSK gel ODS-80Ts column.

References

- 1 K. Imai, T. Toyo'oka and H. Miyano, *Analyst.*, 1984, 109, 1365.
- 2 Y. Ohkura, M. Kai and H. Nohta, J. Chromatogr. B, 1994, 659, 85. 3 N. Seiler, Handbook of derivatives for chromatography, 2nd edn., ed.
- K. Blau and J. M. Halket, Wiley, Chichester, 1993, pp. 175–213.
 4 C. Dejong, G. J. Hughes, E. Van Wieringen and K. J. Wilson,
- 4 C. Dejong, G. J. Hughes, E. Van Wieringen and K. J. Wilson, J. Chromatogr., 1982, 241, 345.
- 5 M. Roth, Anal. Chem., 1971, 43, 880.
- 6 S. Udenfriend, S. Stein, P. Bohlen, W. Dairman, W. Leimgruber and M. Weigele, *Science*, 1972, **178**, 871.
- 7 K. Imai, S. Uzu and T. Toyo'oka, J. Pharm. Biomed. Anal., 1989, 7, 1395.
- 8 K. Imai, S. Uzu, S. Kanda and R. G. B. Willy, Anal. Chim. Acta, 1994, 290, 3.
- 9 K. Imai and Y. Watanabe, Anal. Chim. Acta, 1981, 130, 377.
- 10 T. Toyo'oka, T. Suzuki, Y. Saito, S. Uzu and K. Imai, *Analyst*, 1989, **114**, 413.
- 11 T. Toyo'oka and K. Imai, Anal. Chem., 1984, 56, 2461.
- 12 K. Imai, T. Toyo'oka and Y. Watanabe, *Anal. Biochem.*, 1983, **128**, 471.
- 13 G. Gubitz, R. Wintersteiger and R. W. Frei, *J. Liq. Chromatogr.*, 1984, **4**, 839.

- 14 S. Uzu, S. Kanda, K. Imai, K. Nakashima and S. Akiyama, *Analyst*, 1990, **115**, 1477.
- 15 F. W. D. Rost, *Fluorescence Microscopy*, vol. 1, Cambridge University Press, Cambridge, 1992, pp. 28–31.
- 16 E. L. Wehry and L. B. Rogers, *Fluorescence and Phosphorescence Analysis*, Wiley, New York, London and Sydney, 1966, p. 89.
- 17 D. S. McClure, J. Chem. Phys., 1949, 17, 905.
- 18 Z. Yoshida and R. Oda, J. Synth. Org. Chem. Jpn., 1951, 9, 230. 19 A. Takadate, T. Masuda, C. Murata, A. Isobe, T. Shinohara,
- M. Irikura and S. Goya, *Anal. Sci.*, 1997, **13**, 753.
- 20 H. Matsunaga, T. Santa, T. Iida, T. Fukushima, H. Homma and K. Imai, *Analyst*, 1997, **122**, 931.
- 21 C. Hansch, A. Leo and R. W. Taft, Chem. Rev., 1991, 91, 165.
- 22 L. P. Hammett, J. Am. Chem. Soc., 1937, 59, 96.
- 23 H. H. Jaffe, Chem. Rev., 1953, 53, 191.
- 24 Y. Watanabe and K. Imai, Anal. Chem., 1983, 55, 1786.
- 25 T. Toyo'oka, Y. Watanabe and K. Imai, Anal. Chim. Acta, 1983, 149, 305.
- 26 H. Kotaniguchi, M. Kawakatsu, T. Toyo'oka and K. Imai, J. Chromatogr., 1987, 420, 141.
- 27 K. Shinomiya, H. Toyoda, A. Akahoshi, H. Ochiai and T. Imanari, J. Chromatogr., 1987, 387, 481.
- 28 K. J. James and I. R. Sherlock, Biomed. Chromatogr., 1996, 10, 46.
- 29 S. F. Forgues, J. P. Fayet and A. Lopez, J. Photochem. Photobiol. A: Chem., 1993, 70, 229.
- 30 D. Lancet and I. Pecht, Biochemistry, 1977, 16, 5150.
- 31 H. Heberer and H. Matschiner, J. Prakt. Chem., 1986, 328, 261.
- 32 W. Rettig, Angew. Chem., Int. Ed. Engl., 1986, 25, 971.
- 33 T. Toyo'oka, T. Suzuki, Y. Saito, S. Uzu and K. Imai, *Analyst*, 1989, **114**, 1233.
- 34 C. Dejong, G. J. Hughes, W. E. Van and K. J. Wilson, *J. Chromatogr.*, 1982, **241**, 345.
- 35 S. Udenfriend, S. Stein, P. Bohlen, W. Dairman, W. Leimgruber and M. Weigele, *Science*, 1972, **178**, 871.
- 36 M. Roth, Anal. Chem., 1971, 43, 880.
- 37 K. Imai, S. Uzu, K. Nakashima and S. Akiyama, *Biomed. Chromatogr.*, 1993, 7, 56.

Paper 8/03641A Received 14th May 1998 Accepted 21st July 1998